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Abstract. We calculate the tunnelling current between spatially separated low-dimensional
electron layers in conditions where the magnetic field is applied perpendicular to the tunnelling
direction. Due to the magnetic-field-induced intersection of the parabolic electron spectrum
branches, the current is independent of the scattering mechanism over a wide region of magnetic
field, applied voltage, and level splitting, i.e. the non-dissipative tunnelling regime is realized.
We derive expressions for the tunnelling rate and tunnel current in coupled quantum wells and
wires, and compare these results with the existing experimental data concerning the photoexcited
electron relaxation in double quantum wells, and tunnelling between the two-dimensional and
quasi-one-dimensional layers with independent contacts to each layer. Good agreement between
the theory and the experiments indicates realization of the non-dissipative tunnelling regime in
all of the cases considered.

1. Introduction

In contrast to the tunnelling of electrons in bulk media, the tunnelling between low-
dimensional electron systems must be assisted by a scattering in order to satisfy the
momentum and energy conservation requirements. For example, the tunnelling event in
double quantum wells (DQWs) and other spatially separated two-dimensional (2D) structures
[1] includes the momentum (or the momentum and energy) transfer needed for a transition
from one parabolic branch of the electron spectrum to another; see figure 1(a). When the
level-splitting energy1 (which is usually controlled by a transverse electric field) is much
larger than the collision broadening energy ¯h/τ (τ is the scattering time), the tunnelling
probability is proportional to the scattering rateτ−1. In conditions of tunnelling resonance,
when1 � h̄/τ , this probability is proportional toτ [2], i.e. the tunnel current depends on
the scattering time in the same way as does the electric current in conducting media. The
same situation (see figure 2(a)) is found in tunnelling between quantum wires formed by
application of a lateral confinement potential to the DQWs or related structures [3]. It is
important that in all these cases the tunnelling is dissipative and its probability is explicitly
expressed through the quantities characterizing the scattering.

A basically new situation is found when the magnetic fieldH is applied perpendicular
to the tunnelling direction (thez axis); below we always assume thatH is parallel to they
axis. The influence of the magnetic field on the electron spectrum in DQWs manifests itself
as a field-dependent shift [4] of the 2D energy spectraεl( p) and εr( p) in the right-hand
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Figure 1. The electron spectrum in double quantum wells: (a) without the magnetic field; (b)
with the magnetic field applied parallel to the 2D layers (along they axis).

(r-) and left-hand (l-) wells with respect to each other, as shown in figure 1(b). As a result,
the spectra intersect each other in the momentum–energy space. The electron transition
from one branch to another in the vicinity of the intersection does not require scattering, so
the tunnelling can proceed in a non-dissipative way. An analogous case can be realized in
the above-described quantum wires, when the magnetic field is applied perpendicular both
to the tunnelling direction and to the wire direction (thex axis). The shift of the quasi-
one-dimensional (1D) spectra belonging to thel- andr-layers is shown in figure 2(b)). The
intersection takes place at a number ofpointsin the momentum–energy plane (in contrast to
in the 2D case, when the intersection occurs in aline; see figure 1(b)). Again, the tunnelling
between quasi-1D states near the intersections is non-dissipative.

Investigation of the tunnelling between 2D states in the presence of a magnetic field

Figure 2. The electron spectrum of parallel quantum wires: (a) without the magnetic field; (b)
with the magnetic field applied along the direction of lateral confinement. The wires are formed
into a double-quantum-well system by application of the lateral confinement potential along the
y axis. Only two 1D subbands for each layer are shown.
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perpendicular to the tunnelling direction has been carried out in past years in two kinds
of experiment. The first involves the measurement of the tunnelling relaxation rate of the
photoexcited electrons in DQWs by means of time-resolved spectroscopy [5]. The second
involves the measurement of the tunnel current between the 2D layers using separate contacts
to each layer [4], or a gated-bridge technique [6]. Quite recently, an experimental study
of the tunnelling between quasi-1D states in the magnetic field has been reported [3].
Both experimental data [4, 6] and theoretical calculations [6, 7] show that the tunnelling
conductance of the DQWs appears to be insensitive to the scattering rates over a wide
region of the magnetic fields. This remarkable behaviour confirms the non-dissipative
tunnelling concept stated above. However, theoretical investigation of the problem is, in
our opinion, still not sufficient. Existing calculations [6, 7] describe tunnelling between
2D electron layers only in the linear regime, where the tunnel current is characterized by
the ohmic tunnelling conductance. These calculations refer to the proper kind of tunnelling
experiment concerning measurements of the current in systems with separate contacts. As
we demonstrate in this work, non-dissipative tunnelling also manifests itself in another kind
of experiment [5], via the magnetic field dependence of the tunnelling relaxation rate of
photoexcited electrons. As far as we know, quantitative explanation of these data is lacking.
Non-dissipative tunnelling between quasi-1D electron states has not been indicated, although
a model calculation of the tunnel current between the quantum wires has been presented
[3].

The aims of this paper are: (i) to describe the tunnelling in the low-dimensional
structures in the framework of a unified approach using Green function formalism; (ii)
to derive expressions describing the tunnelling rate and tunnel current in the non-dissipative
regime; and (iii) to compare results of calculations using these expressions with the existing
experimental data on the tunnelling relaxation rate of photoexcited electrons in DQWs [5]
and on the tunnel current in the independently contacted DQWs [4] and quantum wires [3].
Below, in sections 2 and 3, we develop a general formalism for calculation of the tunnel
currentj and rate of tunnellingν, and apply it to the 2D and quasi-1D cases. In section
4 we derive the scattering-independent expressions forν andj (respectively) using results
from the previous sections, and present a comparison with the experiments.

2. General formalism

In consideration of the two-layer system, we use a basis of thel- and r-orbitals (|l〉 and
|r〉, respectively). In this basis, the pair of tunnel-coupled electron states is described by
the 2× 2 matrix Hamiltonian∣∣∣∣ hl T

T hr

∣∣∣∣
hl = [

(p̂x − pH)2 + p̂2
y

]
/2m + 1H + Ul(x, y) + Wl(y)

hr = [
p̂2

x + p̂2
y

]
/2m + Ur(x, y) + Wr(y)

(1)

where T is the tunnelling matrix element, which is assumed to be independent of the
magnetic field,p̂x and p̂y are the momentum operators,Ul,r (x, y) are the random 2D
potentials acting on the electrons in thel- and r-layers, andWl,r (y) are the lateral
confinement potentials for these layers (introduction of these potentials allows one to
describe a transition from the 2D to quasi-1D motion and to write expressions forν andj

in both of these cases in a unified way). The effect of the magnetic field is described by the
characteristic momentum shiftpH = |e|HZ/c and renormalized level splitting1H , where
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H = |H|, e is the electron charge,c is the velocity of light,

Z = 〈r|z|r〉 − 〈l|z|l〉 (2)

is the distance between the centres of the orbitals|l〉 and|r〉 in the right-hand and left-hand
layers, and [8]

1H = 1 + e2H 2

2mc2

[〈l|z2|l〉 − 〈r|z2|r〉 − 〈l|z|l〉2 + 〈r|z|r〉2
]
. (3)

In order to describe the tunnelling probability, we introduce the electron density matrix
and express its non-diagonal componentρ̃t through the diagonal componentsρlt and ρrt

according to [9] (δ → +0):

ρ̃t = iT

h̄

∫ t

−∞
dt ′ eδt ′ exp[−ihl(t − t ′)/h̄][ρlt ′ − ρrt ′ ] exp[ihr(t − t ′)/h̄]. (4)

The diagonal componentsρjt (here and below the subscriptj denotes anl- or r-layer) are
described by the closed system of equations (j 6= j ′)

∂ρjt

∂t
+ i

h̄

[
hj , ρjt

] +
(

T

h̄

)2 ∫ t

−∞
dt ′ eδt ′

× {
exp[−ihj (t − t ′)/h̄][ρjt ′ − ρj ′t ′ ] exp[ihj ′(t − t ′)/h̄] + HC

}
= 0. (5)

Below we assume thatT is much smaller than the mean electron energy and collision
broadening energy ¯h/τ , and make the calculation in the lowest order ofT 2. (In the opposite
case, the electron states near the tunnelling resonance are hybridized, and description of
the tunnelling becomes more complex.) Considering the case of tunnelling relaxation of
the photoexcited electrons (see [5] and references therein) we obtain the balance equation
dnl(t)/dt = −νnl(t), which describes the decrease of the electron concentration in thel-
layer nl(t) due to the tunnelling to ther-layer. The opposite current is neglected since we
assume that ther-layer states are unpopulated. The observable value, the tunnelling rateν,
is obtained directly after transformation of equation (5) to the balance equation:

ν = 2πT 2

h̄

〈∑
λλ′

|(lλ|rλ′)|2 δ(εlλ − εrλ′) flλ

〉 /〈∑
λ

flλ

〉
(6)

where the microscopic states|jλ) and their energiesεjλ are determined from the eigenvalue
problem hj |jλ) = εjλ|jλ), fjλ are the distribution functions, and〈...〉 means statistical
averaging over the random potentialsUj(x, y). In the systems with separate contacts, the
observable value is the density of the tunnel currentj , which is determined by the operator
2i|e|T (ρ̃+

t − ρ̃t )/(h̄S) (S is the normalization area). Using equation (4), we obtain

j = 4π |e|T 2

h̄S

〈∑
λλ′

|(lλ|rλ′)|2 δ(εlλ − εrλ′) [flλ − frλ′ ]

〉
. (7)

In the case of quasi-equilibrium, when the distribution functions depend only on the energies
(fjλ = fj (εjλ)), the above-presented formalism allows us to rewrite equations (6) and (7)
through the Green functions of the electrons in the following way:

ν = 2πT 2

h̄

∫
dε fl(ε)

∫
dx

∫
dy

∫
dx ′

∫
dy ′

〈
Gεl(xy, x ′y ′)Gεr(x

′y ′, xy)

〉
×

[∫
dε fl(ε)

∫
dx

∫
dy 〈Gεl(xy, xy)〉

]−1

(8)
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j = 4π |e|T 2

h̄S2

∫
dε

∫
dx

∫
dy

∫
dx ′

∫
dy ′

〈
Gεl(xy, x ′y ′)Gεr(x

′y ′, xy)

〉
[fl(ε) − fr(ε)].

(9)

In the following section we apply these expressions to the two-dimensional and one-
dimensional problems.

3. Tunnelling in two-dimensional and one-dimensional systems

Below, taking into account the ordinary experimental conditions, we calculate the tunnelling
rate of photoexcited electrons using a non-degenerate distributionfj (ε) ∼ exp(−ε/Te) with
the effective temperatureTe. For the same reason, the currentj is calculated by the use
of degenerate distributionsfj (ε) = 2(εFj − ε); in this case we can also introduce the
applied biasV defined by|e|V = εF l − εFr . For the sake of simplicity, we carry out the
averaging in equations (8) and (9) assuming that the potentialsUl(x, y) and Ur(x, y) are
statistically independent. In the calculation ofν andj—separately for the 2D and quasi-1D
situations—it is convenient to write the Green functions from equations (8) and (9) in the
momentum representation. As a result, both the tunnelling rate and the current between
the 2D layers are expressed through the one-particle causal Green functionsG

(2D)
εl ( p) as

follows:

ν2D = 2πT 2

h̄

∫
dε exp(−ε/Te)

∫
dp

(2πh̄)2
G

(2D)
εl ( p)G(2D)

εr ( p)

×
[∫

dε exp(−ε/Te)

∫
dp

(2πh̄)2
G

(2D)
εl ( p)

]−1

(10)

j2D = 4π |e|T 2

h̄

∫ εF l

εFr

dε

∫
dp

(2πh̄)2
G

(2D)
εl ( p)G(2D)

εr ( p) (11)

wherep = (px, py) is the 2D momentum, and

G
(2D)
εj ( p) = π−1 Im

[
εj ( p) − ε − 6

(2D)
εj ( p)

]−1
. (12)

The electron spectra in ther- and l-wells (shown in figure 1) are obtained from the
eigenvalue problem for Hamiltonian (1) in the absence of the random potentials and
confinement potentials:

εl( p) = 1H + [(px − pH)2 + p2
y ]/2m εr( p) = [p2

x + p2
y ]/2m. (13)

Similar expressions ofν and j in the case of tunnelling between the quasi-1D layers
are derived using the(px, n) representation, wheren is the quantum number for the lateral
confinement eigenstates. We obtain

ν1D = 2πT 2

h̄

∫
dε exp(−ε/Te)

∑
nn′

8nn′

∫
dpx

2πh̄
G

(1D)
εln (px)G

(1D)
εrn′ (px)

×
[∫

dε exp(−ε/Te)
∑

n

∫
dpx

2πh̄
G

(1D)
εln (px)

]−1

(14)

j1D = 4π |e|T 2

h̄

∫ εF l

εFr

dε
∑
nn′

8nn′

∫
dpx

2πh̄
G

(1D)
εln (px)G

(1D)
εrn′ (px) (15)
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and

G
(1D)
εjn (px) = π−1 Im

[
εjn(px) − ε − 6

(1D)
εjn (px)

]−1
. (16)

The electron spectra corresponding to ther- and l-layers (see figure 2) are given by the
expressions

εln(px) = 1H + El
n + (px − pH)2/2m εrn(px) = Er

n + p2
x/2m. (17)

In equations (14) and (15)

8nn′ =
∣∣∣∣∫ dy ϕl

n(y)ϕr
n′(y)

∣∣∣∣2

is the squared overlap integral of the lateral confinement eigenstates, whileEl
n and Er

n

in equation (17) are the lateral quantization energies. Bothϕ
j
n(y) and E

j
n are determined

from the eigenvalue problem [p̂2
y/2m + Wj(y)− E

j
n ]ϕj

n(y) = 0. A calculation of the self-

energies6(2D)
εj ( p) and 6

(1D)
εjn (px) in equations (12) and (16) requires explicit description

of the scattering. However, if the typical energy of the electrons (the temperature or Fermi
energy) is much larger than the self-energies, we can use a collisionless approximation,
where the imaginary parts of the self-energies go to zero and the real parts are neglected
as a small renormalization of the energy spectra. From the physical point of view, this
approach describes the non-dissipative tunnelling regime and leads to scattering-independent
expressions for the tunnelling rate and tunnel current, which are valid over a wide interval
of the magnetic fields and other parameters. These expressions are derived and analysed in
the following section.

Figure 3. The dependence of the tunnelling time in the GaAs/Ga0.65Al 0.35As/GaAs DQWs
(5 nm/6 nm/10 nm) on the magnetic fieldH . The solid line shows the results from the calculation
using equation (18); the points are taken from experiment [5].
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4. Results

4.1. The tunnelling relaxation rate

Application of the collisionless approximation to equation (12) givesG
(2D)
εj ( p) ' δ(εj ( p)−

ε). After substitution of this formula into equation (10), we obtain

ν2D =
√

πT 2

h̄
√

TeεH

exp

[
− (εH − 1H)2

4εHTe

]
(18)

whereεH = p2
H/2m. This formula describes resonant-like dependence of the tunnelling rate

on the magnetic field as well as on the level splitting. The rate is highest whenεH ' 1H ,
i.e., when the spectrum intersection line goes through the minimum of thel well spectrum.
As we shift out of this resonance, the number of electrons near the intersection becomes
smaller, and the tunnelling rate decreases exponentially. We also note the asymmetry of
ν2D as a function of the magnetic field.

A dependence of this kind has been recently observed experimentally [5] in asymmetric
GaAs/Ga0.65Al 0.35As DQWs. In order to demonstrate that the non-dissipative tunnelling
regime has been really realized in this experiment, we have compared equation (18) with
the experimental curve of the tunnelling timeν−1 versusH . The result (see figure 3) is
described by the following parameters: splitting energy1, tunnelling matrix elementT ,
and electron temperatureTe. The value of1 fixes the position of the resonance,Te (under
fixed 1), and determines its width, whileT (under fixed1 and Te) gives the tunnelling
time in the resonance. A good agreement is achieved at1 = 73 meV,T = 0.425 meV
and Te = 63 K. For comparison, an estimate in the square-well approximation gives
1 ' 60 meV andT ' 0.2 meV, while the experimental data provideTe ' 50 K. At
small H , the experimental values ofν−1 are smaller than the theoretical ones. This is
not surprising, since far from the resonance the number of electrons able to perform non-
dissipative tunnelling is exponentially small, and one should use the more general equation
(10) instead of equation (18). Nevertheless, whenTe exceeds the collision broadening
energy, equation (18) describes the experimental data in the vicinity of the resonance quite
well.

From equation (14) withG(1D)
εjn (px) ' δ(εjn(px) − ε), we find the rate of tunnelling in

the quantum wire states:

ν1D =
√

πT 2

h̄
√

TeεH

∑
nn′

8nn′ exp

(
−El

n

Te

)
exp

[
− (εH − 1H − El

n + Er
n′)2

4εHTe

]

×
[∑

n

exp

(
−El

n

Te

)]−1

(19)

which behaves in a similar way toν2D. We stress that in the case of equal lateral potentials in
both wells (Wl(y) = Wr(y)) we haveEl

n = Er
n and8nn′ = δnn′ , so the tunnelling relaxation

rateν1D appears to be equal toν2D. As far as we know, tunnelling between the wires has not
been studied by means of time-resolved spectroscopy, though time-resolved investigation
of the electron energy relaxation in a single wire has already been reported [10].
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4.2. The tunnel current

The non-dissipative tunnel current between 2D systems is found after application of the
collisionless approximation to equation (11):

j2D = |e|T 2m

πh̄3εH

{√
4εH (εFr + |e|V ) − (1H + εH )2 −

√
4εHεFr − (1H + εH )2

}
(20)

where the square roots are assumed to be equal to zero when the expressions under them
are negative. Equation (20) describes a non-zero current when the line of the spectrum
intersection appears in the energy interval betweenεFr andεF l . There can be two kinds of
current–voltage characteristicj2D(V ). For εFr < (1H + εH )2/4εH we have a square-root
dependence with the threshold at|e|V = (1H + εH )2/4εH − εFr , i.e. the non-dissipative
current is abruptly turned on with the increase ofV . For the opposite inequality we have
a linear dependence ofj2D on V for small voltage (the ohmic case). The dependence of
j2D on the level splitting1 is more complex. However, in conditions where the number
of electrons in ther-layer is small and the back current (the second square root in equation
(20)) may be neglected, this dependence is described by a semi-ellipse with a maximum at
1H = εH .

Figure 4. The dependence of the tunnelling conductanceG in the GaAs/Ga0.65Al 0.35As/GaAs
DQWs (13 nm/7 nm/13 nm) onH at 1 = 0. The solid and dashed lines correspond to
calculations using equations (20) and (11), respectively. The experimental points are taken
from [4].

In the ohmic case, one can introduce the interlayer conductanceG according to
G = (j2D/V )V →0. The conductance has been calculated in [7] using the Kubo formalism,
and an expression forG in the non-dissipative regime has been derived. This calculation
qualitatively described the experimental [4] dependence ofG on the magnetic field and
level splitting, but a detailed comparison with the experiment has not been presented. In
figure 4 we plot the normalized conductance versus the magnetic field calculated with the
use of the experimental parameters from [4] (points correspond to experimental data). The
dashed line corresponds to a calculation using the more general equation (11), where we
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estimate6(2D)
εj (p) ' i h̄/(2τj ) andτj is the scattering time in the Fermi surface of thej th

well (this approach is correct sinceεFj � h̄/τj ). We assume symmetrical scatteringτl = τr

and choose ¯h/τl ' 1 meV in order to match the height of the non-dissipative ‘plateau’
with the height of the resonance atH = 0. With this single fitting parameter, a reasonable
agreement with the experiment is obtained.

Figure 5. The tunnel currentj1D (arbitrary
units) of the tunnelling between the quantum
wires as a function of the level splitting1 at
H = 10 T (the parameters are taken from [3]
and described in the text). The smooth solid
line shows the experimental dependence [3].

Let us consider the non-dissipative current between the quantum wires (quasi-1D
systems). In the collisionless approximation, equation (15) transforms to

j1D = 2|e|T 2m

h̄2pH

∑
nn′

8nn′2
[
4εH (εF l − Er

n′) − (El
n − Er

n′ + 1H + εH )2
]

×2
[
(El

n − Er
n′ + 1H + εH )2 − 4εH (εFr − Er

n′)
]
. (21)

This formula shows that the current is non-zero when at least one point of the spectrum
intersection (see figure 2(b)) is situated in the energy interval betweenεFr and εF l . The
current demonstrates a step-like growth (or decrease) as a function of the magnetic field,
applied voltage and level splitting when a new intersection point comes in (or out of) this
interval. To demonstrate this remarkable behaviour, we have calculatedj1D as a function of
the level splitting at constant magnetic fieldH = 10 T for the following experimental
conditions [3]: thel-layer (emitter) is uniformly occupied andεF l − 1H = 6 meV;
the r-layer is unoccupied (εFr = 0); the lateral confinement potentials in the wells are
parabolic andWj(y) = m�2

j y2/2, h̄�l = 1.5 meV,h̄�r = 3.5 meV; the effective interlayer
separationZ = 20 nm. The dependence is shown in figure 5 by the solid ‘staircase’
line. The dashed staircase line shows the same dependence for a simplified situation, when
h̄�l = h̄�r = 1.5 meV and the tunnelling occurs only between the subbands with equal
numbers (n′ = n). Since there are only four subbands below the Fermi level in the emitter,
the total number of steps is four. The case of non-equal�j shows a more complex picture
of steps, but the highest steps again correspond to the transitions withn′ = n. The steps are
clearly visible in the experimental curve from [3], which is also plotted in figure 5. The fit
between the experimental and theoretical data in figure 5 is achieved by adjusting the values
of the threshold voltage and maximum-current voltage to the proper theoretical values of
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1H . Also, the maximum current is fitted to its experimental valuej1DL ' 0.8 nA, where
L ' 600 nm is the wire length [3]. This fit allows one to extract the value of the tunnelling
matrix elementT ' 0.016 meV from the experimental data. A value of the same order is
obtained from a numerical estimate using parameters for the structure investigated.

A more detailed agreement between the experimental and theoretical data may be
achieved when a scattering is taken into consideration. As follows from equation (15),
the scattering should lead to some broadening of the sharp steps in the staircase dependence
shown in figure 5. In order to explain their experiment, the authors of [3] have carried
out a calculation using a formula similar to equation (15), where the product of Green
functions is replaced by a Lorentzian. This modelling approach describes broadening of the
experimental curves, but it is not concerned with detailed consideration of the scattering.
On the other hand, the simple scattering-independent analytical expression (21) not only
satisfactorily explains the experiment [3], but also demonstrates the importance of the
collisionless approach in calculation of the tunnel current in quasi-1D systems.

In conclusion, application of the magnetic field perpendicular to the direction of the
tunnelling allows one to realize the non-dissipative interlayer tunnelling regime in low-
dimensional systems. This regime exists due to the field-induced intersection of the parabolic
branches of the electron spectra belonging to the different layers. The tunnel current
in these conditions is determined only by the magnetic field, level splitting, tunnelling
matrix element, and energy distribution of the electrons. As we tried to show in this
study, this behaviour is consistent with measurements of the tunnelling relaxation rate of
the photoexcited electrons in DQWs as well as with measurements of the tunnel current
between independently contacted 2D and quasi-1D layers.
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